SEMARNAT

SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

Cámara Mexicana de la Industria de la Construcción

Subdirección General de Agua Potable, Drenaje y Saneamiento

Coordinación General de los Proyectos de Agua Potable y Saneamiento del Valle de México

Planta de Tratamiento de Aguas Residuales

Municipio de Atotonilco de Tula Estado de Hidalgo

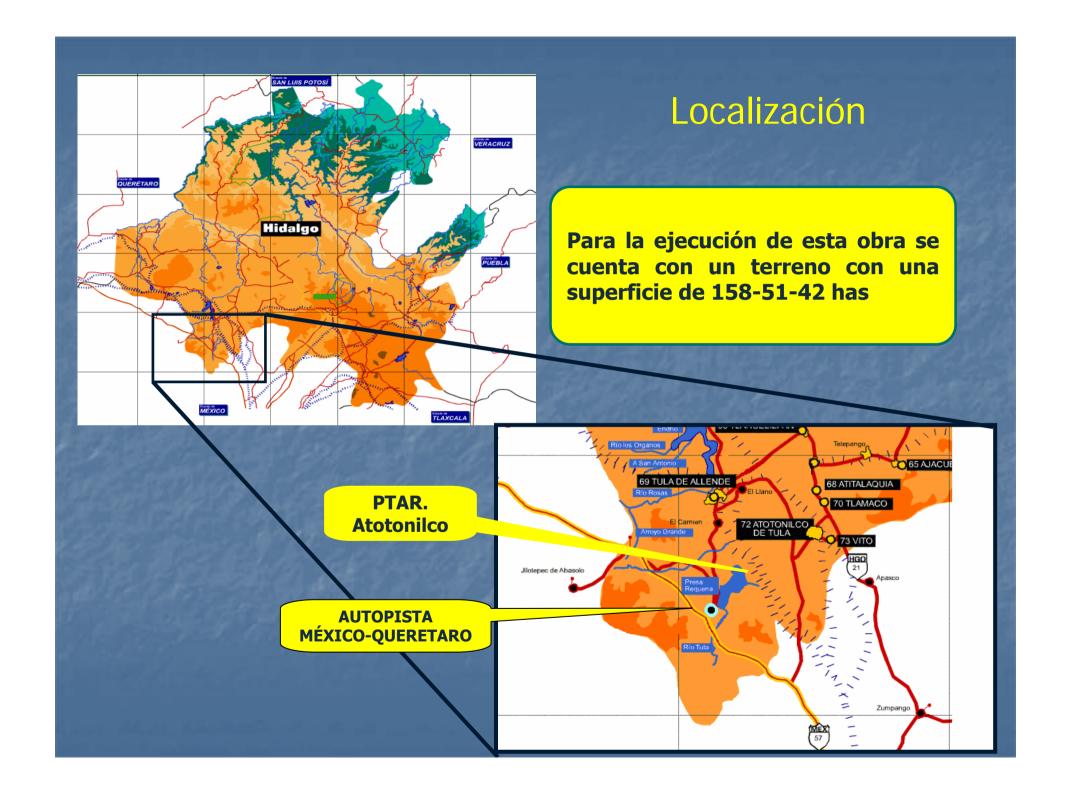
> 28 de mayo de 2008 México, D.F.

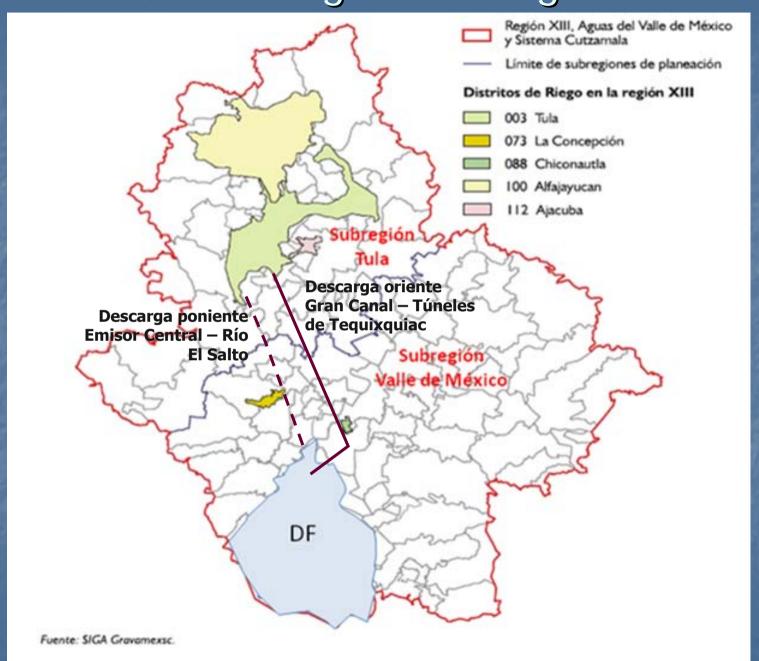
I.- Antecedentes

- En noviembre de 2007, el Director General de la Comisión Nacional del Agua presentó al Sr. Presidente de la República el Programa de Sustentabilidad Hídrica de la Cuenca del Valle de México.
- El Programa atiende diversos problemas en las áreas de protección de acuíferos, desarrollo de nuevas fuentes de agua potable, intercambio de aguas de uso agrícola, drenaje, tratamiento de aguas residuales y restauración ecológica de cuerpos de agua en el Valle de México.
- Las dos obras de mayor envergadura contempladas en el Programa son el Túnel Emisor Oriente y la Planta de Tratamiento de Aguas Residuales de Atotonilco de Tula, Estado de Hidalgo.
- El proyecto del Túnel Emisor Oriente ha sido tema de otras reuniones; el tema de la reunión de hoy es la PTAR Atotonilco

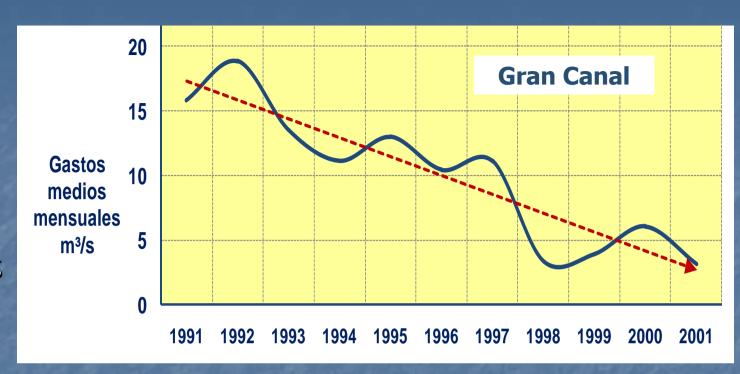
Agua potable y saneamiento en el Programa de sustentabilidad hídrica de la cuenca del Valle de México

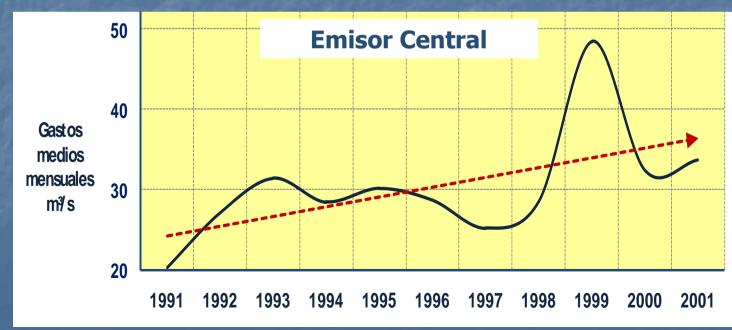
Obras 2007 – 2012 (Gasto en m³/s)		
PTAR Guadalupe	0.5	
PTAR Berriozábal	2.0	
PTAR Nextlalpan	9.0	
PTAR Zumpango 2rio	1.5	
PTAR Zumpango 3rio	2.5	
PTAR Vaso El Cristo	4.0	
PTAR Atotonilco	23.0	
Suma:	42.5	



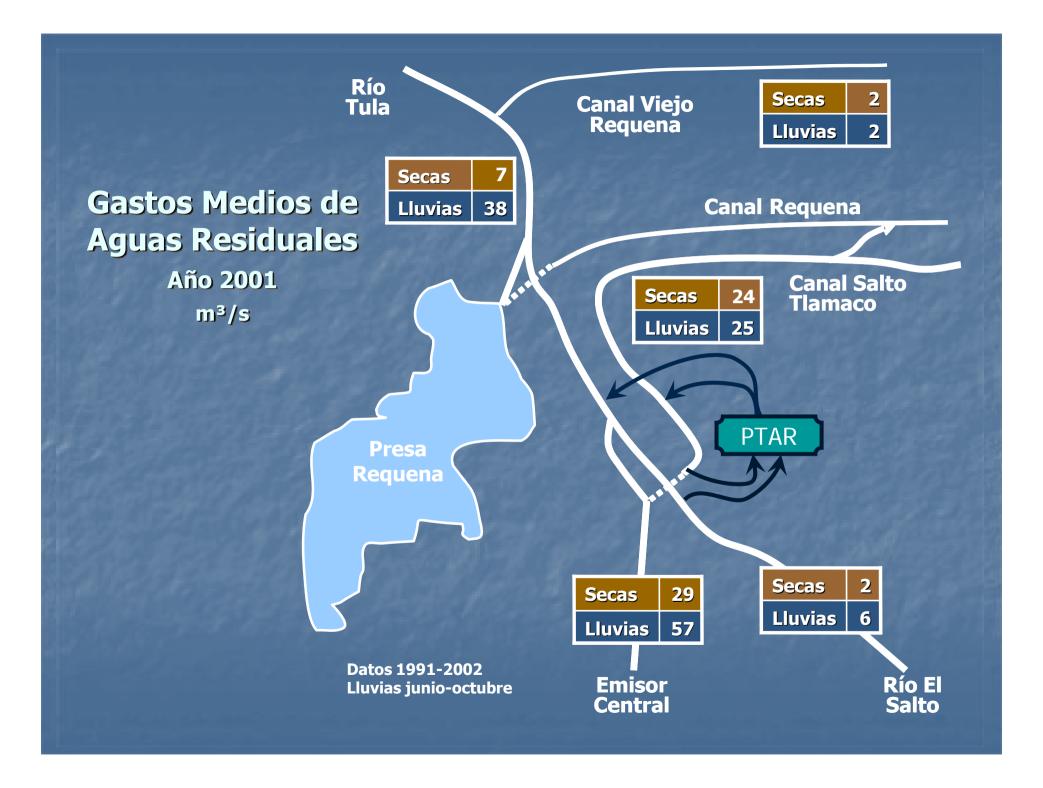

Obras para alivio al acuífero

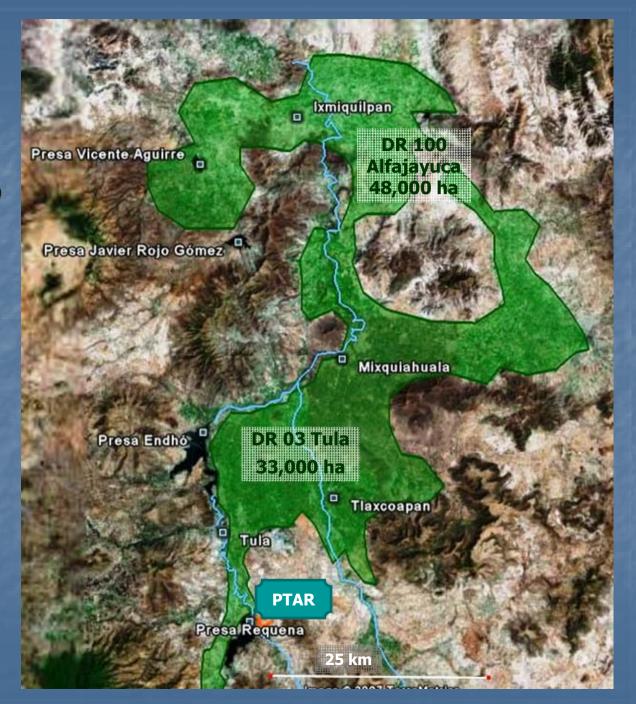
II.- Condiciones generales


- El Valle de México exporta sus excedentes de aguas residuales al Valle de Tula por dos sitios:
 - al oriente por los túneles de Tequixquiac donde descarga sus aguas el Gran Canal,
 - Al poniente a través del Emisor Central y el río El Salto y, a futuro, por el nuevo Túnel Emisor Oriente.
- La PTAR Atotonilco tiene como fin el dar tratamiento a las aguas residuales que se exportan en las descargas del poniente.
- Las aguas residuales se utilizan sin tratamiento en el Valle de Tula para el riego de cerca de 90,000 ha.
- En el Valle de Tula viven 700,000 habitantes de los cuales, 300,000 habitan directamente en las zonas de riego
- Para la construcción de la PTAR la CNA cuenta con un predio de 159 ha en la zona aledaña al Portal de Salida del Emisor Central.

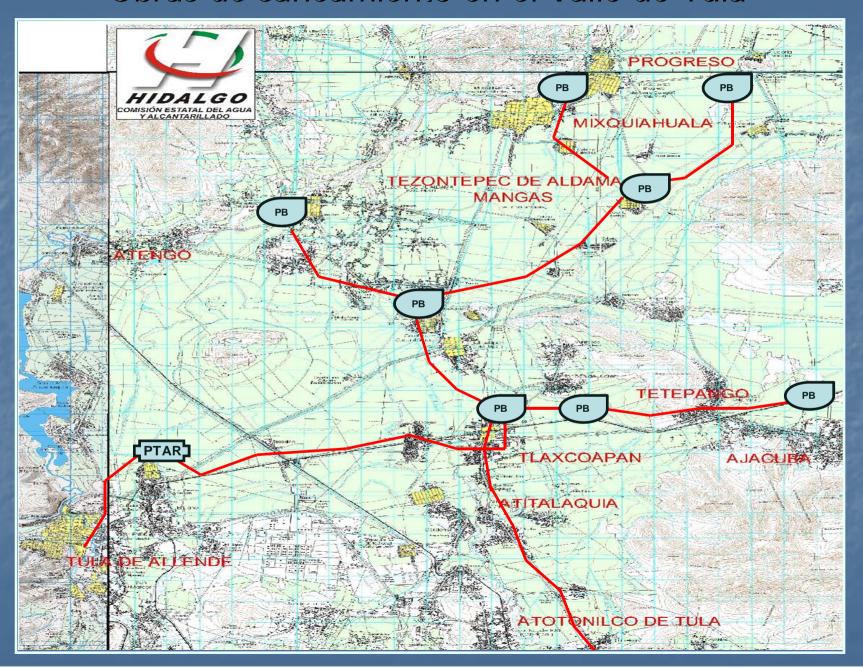


Distritos de riego en la Región XIII


Gastos medios mensuales en los meses de estiaje

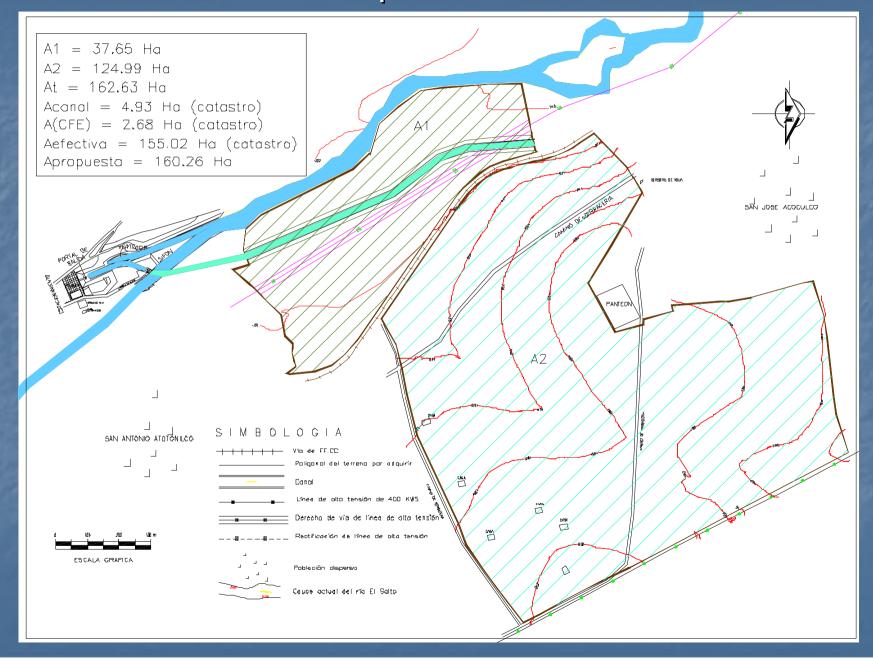


Sitio para construcción de PTAR El Salto



Zonas de Riego en el Valle del Mezquital

Obras de saneamiento en el Valle de Tula


III.- Características del terreno para la PTAR

- El terreno se encuentra en un entorno rural.
- En las zonas aledañas se encuentran bancos de calizas (CaCO₃), bancos de arcilla, hornos de cal (CaO) e importantes cementeras. La explotación de materiales ha dejado grandes socavones aptos para la disposición final de lodos.
- Los suelos son alcalinos.
- El terreno lo atraviesa una línea de ferrocarril y otra pasa en sus inmediaciones.
- Por el terreno pasa una línea de alta tensión de CFE.
- El terreno se encuentra junto al principal canal de riego del DR 003 y junto al río El Salto.
- El terreno se encuentra a pocos metros del Portal de Salida del Emisor Central y en donde desembocará el futuro Túnel Emisor Oriente

Terrenos destinados para la construcción de la PTAR

Sitio para la PTAR

Banco de arcilla

Cementos Cruz Azul

Capacidad estimada

Distancia a PTAR El Salto

1,000,000 m³ 4 km

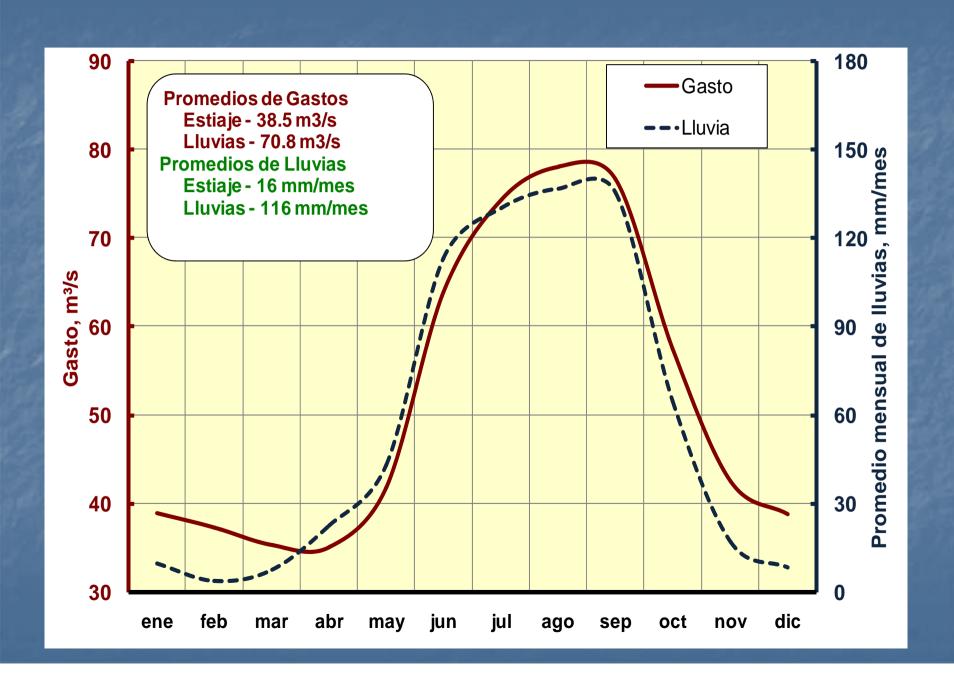
Banco de calizas del Ejido Conejos Explotado por Cal Marfil

Capacidad estimada

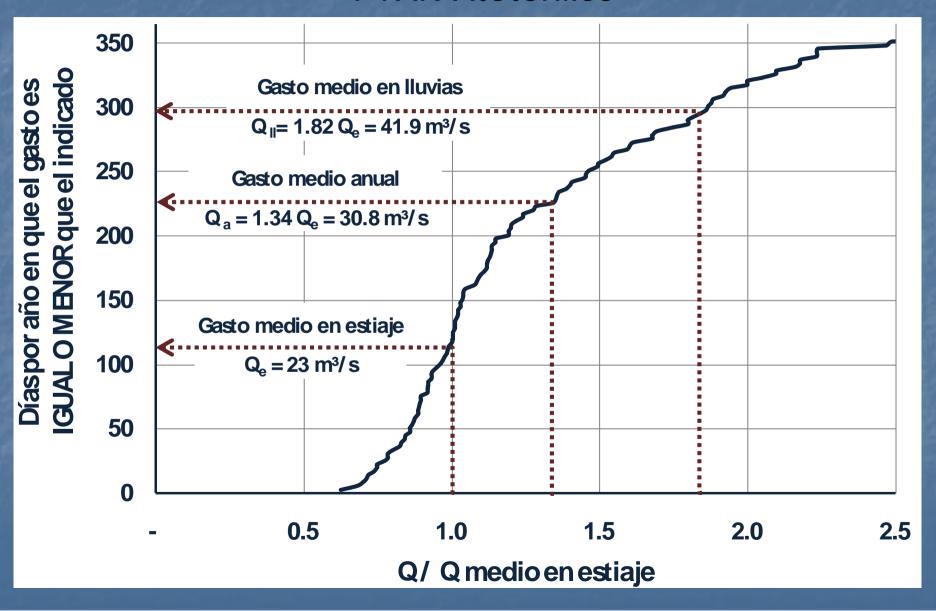
Distancia a PTAR El Salto

1,000,000 m³ 2 km

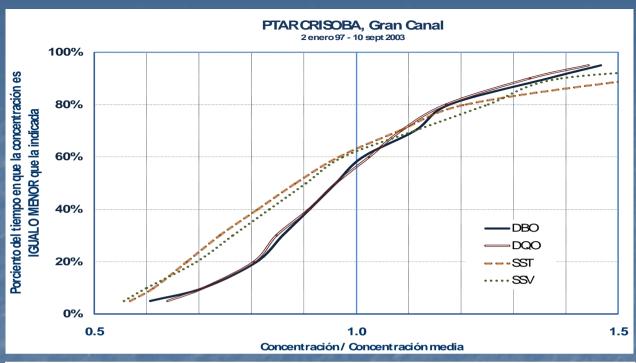
Banco de calizas "El Xirgo" Cementos Cruz Azul

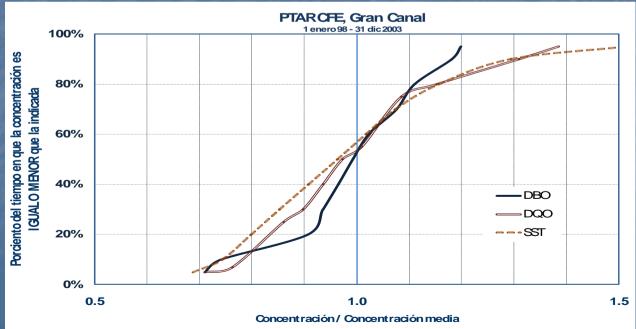


Capacidad estimada Distancia a PTAR El Salto 3 millones m³ 6 km


IV.- Caudales y características de las aguas residuales

- El sistema de drenaje de la ciudad de México recibe tanto las descargas domésticas e industriales, como los escurrimientos pluviales de su propia cuenca.
- En el régimen de lluvia del Valle del México cerca del 75% de la precipitación anual ocurre en solo cinco meses del año.
- Con frecuencia, la lluvia se concentra en tormentas de poca duración y alta intensidad.
- A resultas de lo anterior, tanto la cantidad como la calidad de aguas residuales que recibe la red de drenaje presenta fuertes fluctuaciones estacionales.
- Si bien sería deseable, no es económicamente posible dimensionar las unidades de tratamiento para manejar los picos hidráulicos que ocurren en períodos de lluvias intensas.


Exportaciones medias mensuales al Valle de Tula en los años 1991 a 2001



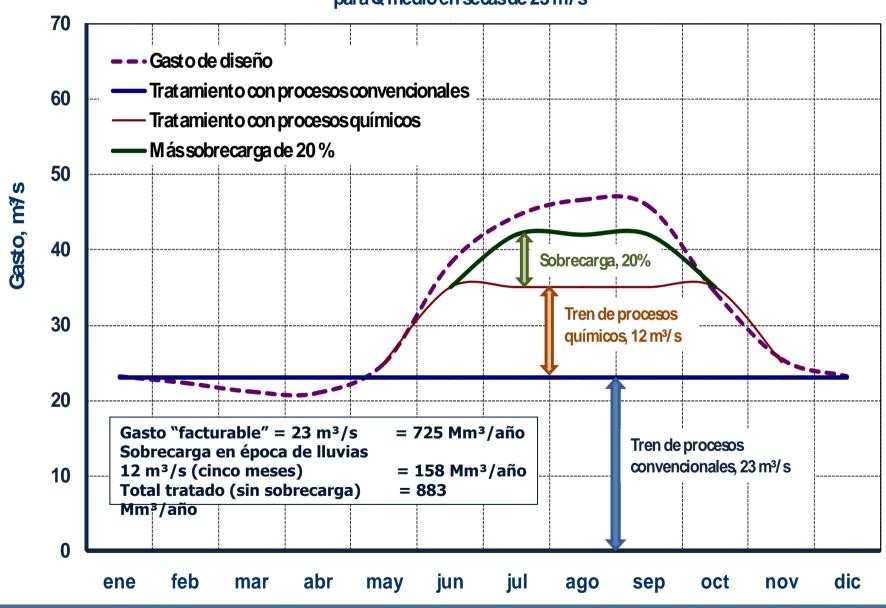
Distribución probabilística de gastos de llegada a la PTAR Atotonilco

Variaciones probabilísticas en la calidad de las agua residuales

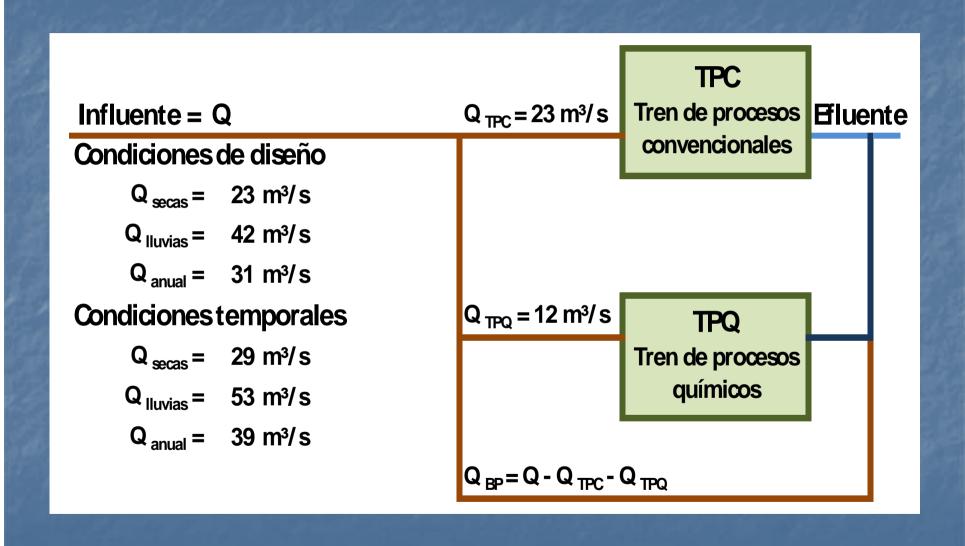
Fluctuaciones en calidad de las aguas residuales en El Salto

Danámatus	Unidad	El Salto		
Parámetro		Secas	Lluvias	Anual
Temperatura	°C	16 a 23		
рН	UpH	7.0 a 8.5		
Sólidos suspendidos totales	mg/l	250	400	313
Sólidos suspendidos volátiles	mg/l	150	250	192
DBO ₅ total	mg/l	250	200	229
Nitrógeno total de Kjeldhal	mg/l	40	25	38
Fósforo total	mg/l	12	10	11
Grasas y aceites	mg/l	16	12	14
Sulfuros	mg/l	10	4	8
Coliformes fecales	NMP/100 ml	6.0E+07	1.0E+08	
Huevos de helminto (totales)	U/I		4 a 10	

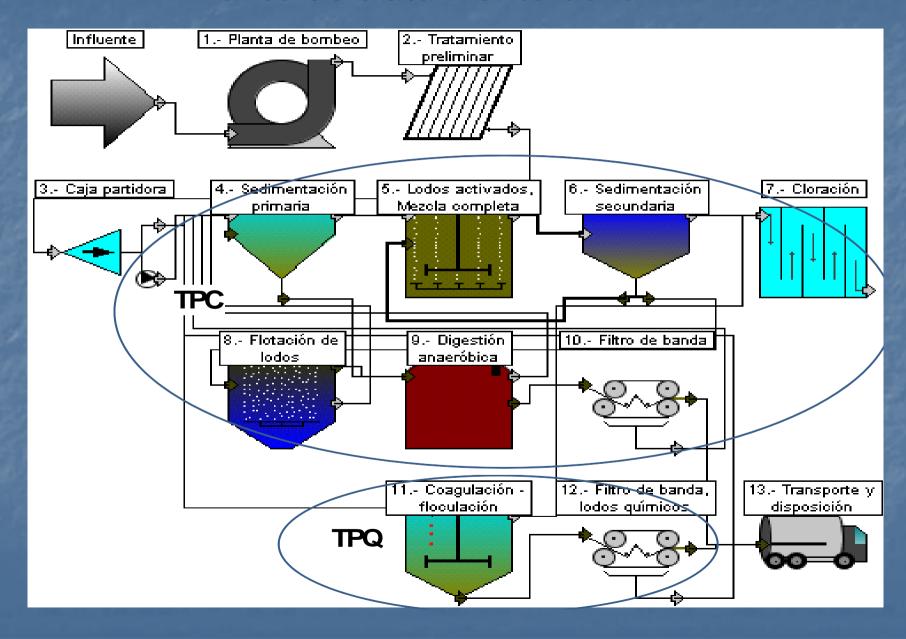
Normas de calidad de la descarga

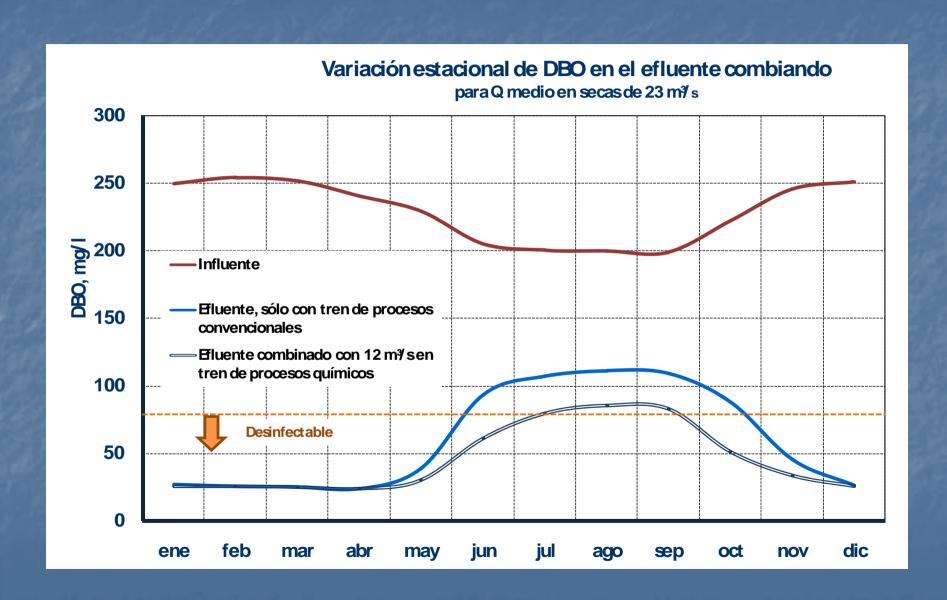

Parámetro	Unidades	Promedio	Promedio
		mensual	diario
Grasas y aceites	mg/l	15	25
Sólidos sedimentables	ml/l	1	2
Sólidos suspendidos totales	mg/l	40	60
DBO5	mg/l	30	60
Nitrógeno total	mg/l	15	25
Fósforo total	mg/l	5	10
Coliformes fecales	NMP/100 ml	1,000	2,000
Huevos de helminto	#/I	1	1
Cadmio total	mg/l	0.1	0.2

v.- Aspectos técnicos de la PTAR


Tratamiento de las aguas residuales

- Con el fin de dimensionar el problema, la Comisión Nacional del Agua realizó un ejercicio de diseño de una alternativa para el tratamiento de las aguas residuales.
- Los objetivos del ejercicio fueron, entre otros:
 - estimar requerimientos de terrenos,
 - estimar necesidades de energía y otros insumos (cloro, polímeros, coagulantes, etc.), estimar generación de lodos y alternativas para su disposición final,
 - estimar generación de empleos,
 - estimar costos de inversión y de operación y mantenimiento, etcétera.
- La solución escogida de ninguna manera debe ser interpretada como una imposición sobre los licitantes del proyecto, ni sus criterios económicos o de diseño como una restricción o recomendación de la CNA


Gastos de llegada y capacidad de tratamiento, condiciones de diseño para Q medio en secas de 23 m³/s


Esquema de funcionamiento hidráulico de la PTAR

Trenes de tratamiento de la PTAR

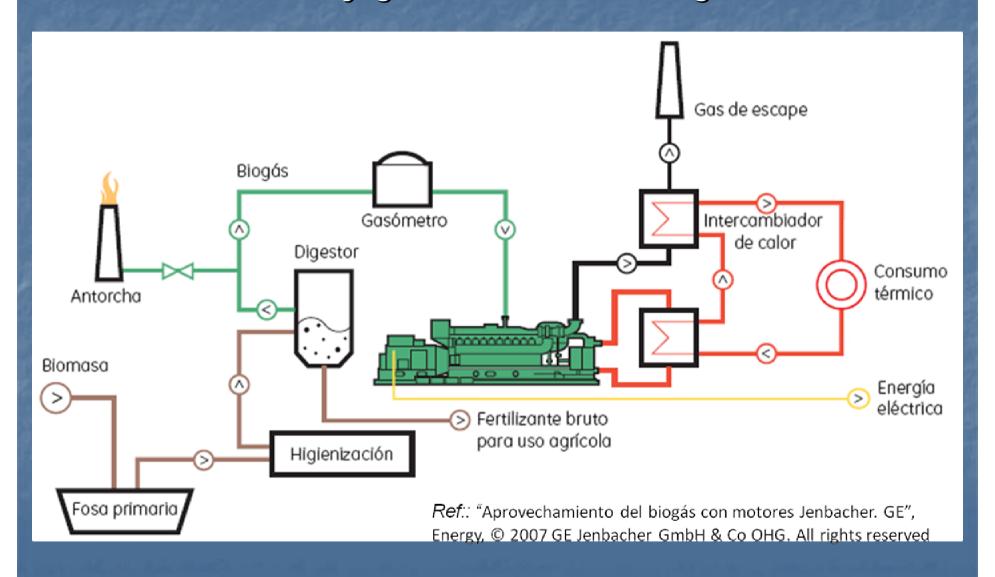
Efectos del TPQ en la calidad del efluente

Producción de lodos

Lodos producidos					
Proceso	Peso húmedo	Contenido de sólidos	Peso seco	Densidad t/m3	Volumen m³/día
	t/día		t/día	J0	, 66.
10 Filtro de banda del TPC	3,200	19%	608	1.20	2,667
12 Filtro de banda, TPQ, sólo se producen en los meses de lluvia	2,768	19%	526	1.20	2,307
Total, válido para meses de lluvia	5,968	19 %	1,134	1.20	4,974

Peso seco y contenido orgánico de lodos

Parámetro	Lodos del TPC	Lodos del TPQ 5 meses del año	Total en época de lluvias	Unidades
Volumen	2,670	2,310	4,980	m³/día
Peso seco				
Sólidos inorgánicos	310	205	515	t/día
Sólidos orgánicos	299	321	620	t/día
Sólidos totales	609	527	1,135	t/día


Contenido calorífico de lodos

Energía calorífica en lodos por peso seco	5.3 giga cal / t, sólidos totales
Lodos producidos en, peso seco	609 t/día de TPC, al 90%
	3,201 giga cal / día
Energía en lodos	155 Mw
Energía requerida para producir cemento (2)	0.74 giga cal / t de cemento
Producción potencial de cemento con energía de lodos	4,311 t/día
	2.0 dlls / M BTU
Costos de energía con coke de petróleo	7.94 dlls / giga cal
Valor de la energía calorífica de lodos de TPC,	102 NI¢/oão
a precios de coke de petróleo	102 M\$/año

⁽¹⁾ WEF, MOP 8, Vol III, Cap. 23, p 48.

⁽²⁾ Wikipedia

Aprovechamiento de gases del digestor para calentamiento y generación de energía eléctrica

VI.- Aspectos económicos

Inversión y costos de operación y mantenimiento de la planta

Concepto	Inversión _{M\$}	OyM M\$/año
Obras de llegada	264	59
Tren de Procesos Convencionales (TPC)	4,530	363
Tren de Procesos Químicos (TPQ)	412	138
Unidades y servicios Edificios, laboratorios, transporte de lodos, etcétera	487	55
Suma	5,693	615
Otros costos instrumentación y control, etcétera	1,666	17
Total	7,359	632

Los costos de operación de este cuadro están calculados como si el TPQ operase todo el año, en realidad el TPQ sólo trabajará cuando el gasto influente exceda la capacidad del TPQ, los costos reales anuales de OyM se estiman en 542 M\$/año

Costos y beneficios de gasoeléctrica

Generación de energía en PTAR Atotonilco				
SV destruidos en digestor anaeróbico	250 ton/día			
Gas producido (70% metano)	9,729 m3/hr			
Potencia aprovechable	21 Megawatts			
Energía aprovechable	0.49 Mw-hr/día			
	180 M kw-hr/año			
	0.43 M\$/día			
Valor de energía producida	158 M\$/año			
Gasoeléctrica				
Inversión en gasoeléctrica @ de 2 M dlls/MW	452 M \$			
Costo de operación y mantenimiento @ 0.015 dlls/kwhr	30 M \$			
Inversión capitalizada en 2 años de construcción	519 M\$			
Pago de capital en 20 años de operación @ 8 % anual	53 M\$/año			
Costo anual total	83 M\$/año			
Beneficio neto	75 M\$/año			

Valor de los bonos de carbono

	A	Ref.:	CRC, p.	F 241								
Parámetro	Unidade	es	WEF MOP 8, Vol. 3, C 22, p. 24 y 25									
Р	atm		V = nRT/P									
V	I											
n	gm mo	/ R =	R = 0.082									
		100										
Τ	°K	*K=	273.2	+ °C								
n		Т	Р	V	THE STATE OF							
gm mol	°C	°K	atm	I								
1	20	293	0.70	34.36								

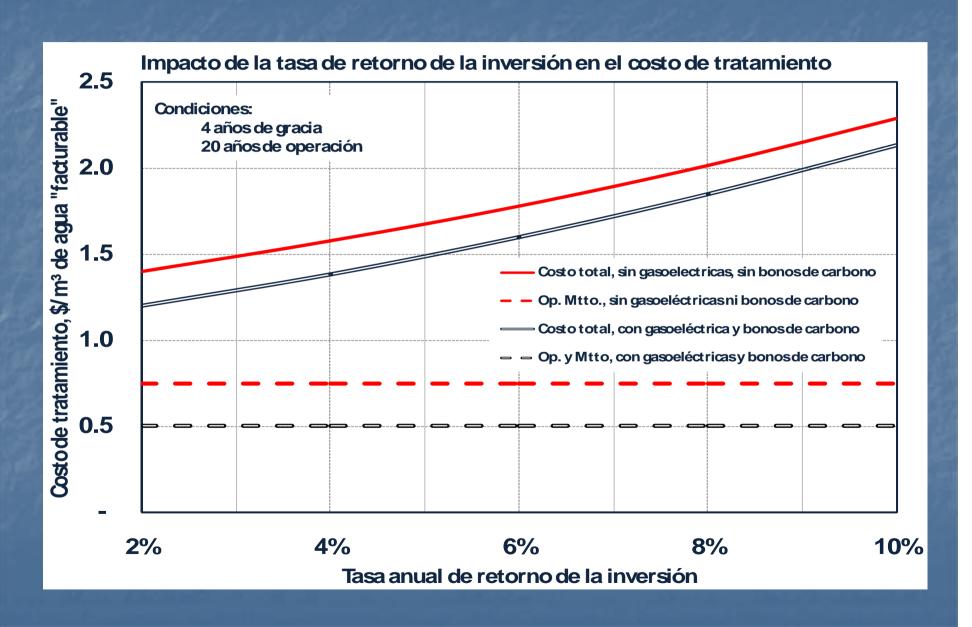
Características de gases del digestor										
Gas	gm mol	%	Peso							
CH ₄	16.01	70%	11.21							
CO ₂	44.01	30%	13.20							
Mezcla	24.41	100%	24.41							
Densidad										

	9,729	m3/hr
Gas producido	6,911	kg/hr
Droducción de metene de digesteros	3,173	kg/hr
Producción de metano de digestores	27,796	t/año
Potencial de calentamiento global del CH4 referido a concentraciones de CO ₂	21	
Reducción Eq. de CO _{2,} descontando el CO2 producido en gasoeléctrica, t/año	507,276	t/año
Bonos de Carbono, @ 270 \$/t de CO2 (16.5 €/t CO2)	137	M\$/año

Pesos moleculares:

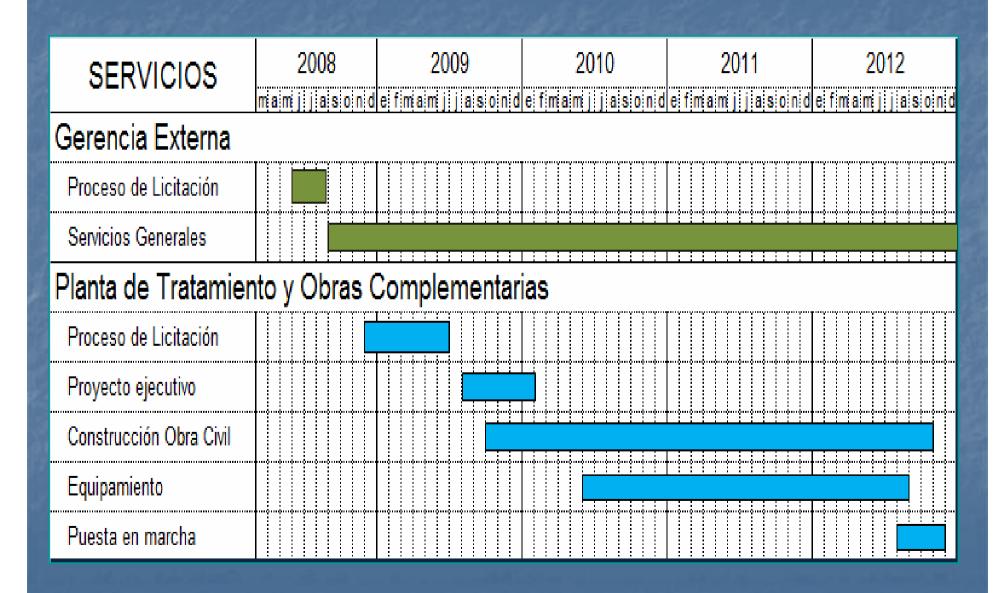
CH4 = 12 + 4*1 = 16

CO2 = 12 + 2*16 = 44


Rel. [CO2] / [CH4] = 2.75

Costos del tratamiento

Inicio del		PTAR al =7,091 M\$ ene 2007	Inversión capitalizada al inicio del año 5 Tasa de interés anual			
año		rsión anual	6%	10%		
ano	%	M\$	M\$	M\$		
1			<u> </u>			
l l	20%	1,418	1,790	2,039		
2	35%	2,482	2,956	3,259		
3	35%	2,482	2,789	2,976		
4	10%	709	752	776		
		Suma	8,287	9,050		
	Pagos al	637	949			
	T1 para gast	0.88 1.31				
Costos de o	operación y man	542				
Т	2 + T3 para ga	0.75				
Co	sto total por agu	a facturable (\$/m³) =	1.63	2.06		


Los costos del cuadro no consideran el beneficio de los bonos de carbono cuyo importe se estima en \$ 274 millones por año (incluyendo los derivados por la combustión del metano para el calentamiento del digestor), a razón de 16.5 €/ton CO₂, ni el beneficio neto de la gasoeléctrica que se estima en \$ 83 millones por año, para un total de \$ 357 millones por año, equivalentes a 0.49 \$/m³.

Impacto de la tasa de retorno en el costo de tratamiento

VI.- Aspectos administrativos y contractuales

Calendario de obras

Calendario de obras

		2008				2009														
		V	dic	;	en	е	feb	ı	nzo	ě	br	may	jur	1	jul	ago	sep	oct	nov	dic
Publicación Pre-Bases																				
Publicación de Convocatoría	[18																		
Visita de Obra		27																		
Junta de Aclaraciones		28																		
Periodo de preparación ofertas																				
Presentación de Propuestas												18								
Evaluación de Propuestas														$\dot{\top}$						
Preparación dictamen y fallo																				
Firma del contrato																				
Inicio de actividades																17				
Proyecto, Construcción Puesta en Marcha																				
Proyecto Ejecutivo																				
Construcción Obra Civil																				
Equipamiento																				
Pruebas																				
Puesta en Marcha																				
Obras Complementarias																				

Para la implementación del proyecto la CONAGUA tiene bajo consideración:

- Contratar la construcción, operación y mantenimiento a largo plazo de la PTAR Atotonilco con un esquema de Contrato de Prestación de Servicios (CPS)
- Contratar los servicios de una compañía privada para la gerencia del proyecto en sus aspectos técnicos
- Contratar los servicios de asesoría legal, económica y financiera de una institución bancaria

El Contrato de Prestación de Servicios (CPS) de la PTAR Atotonilco (GEP) sería licitado en el mes de noviembre del presente año.

El plazo para la preparación de ofertas será de 131 días.

El plazo estimado de construcción de la PTAR es de 3 años 8 meses.

El contrato de la gerencia externa de proyecto (GEP) será licitado en un concurso público el próximo martes 2 de junio.
Los interesados contarán con seis semanas para la presentación de ofertas.

Tareas del GEP

6ª etapa.- Validación / verificación de puesta en marcha de PTAR

5^a etapa.- Seguimiento de construcción y montajes

4ª etapa.- Revisión de proyecto ejecutivo

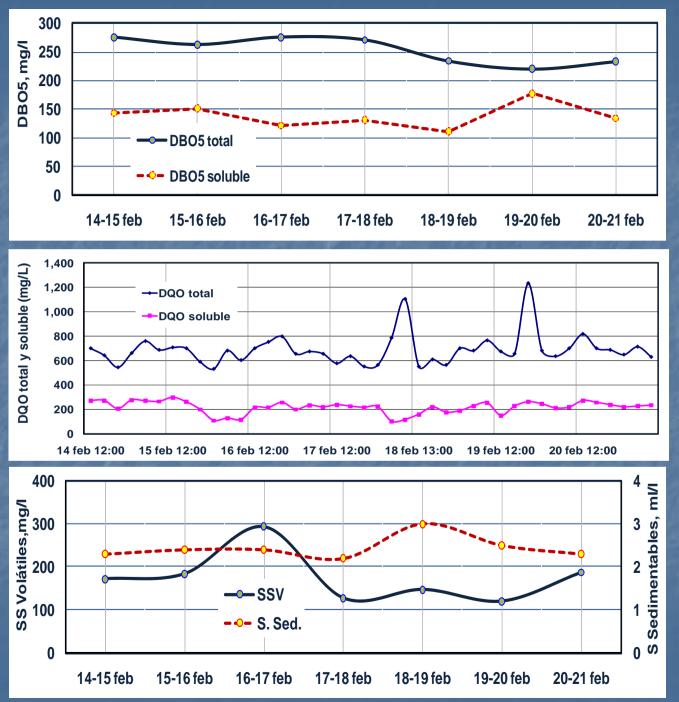
3ª etapa.- Evaluación de ofertas, sustento de fallo, impugnaciones

2ª etapa.- Respuestas a preguntas, visitas a sitios, información complementaria

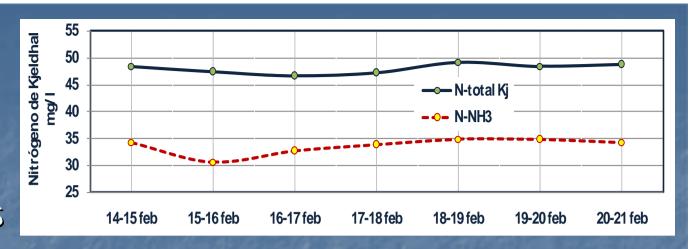
2008

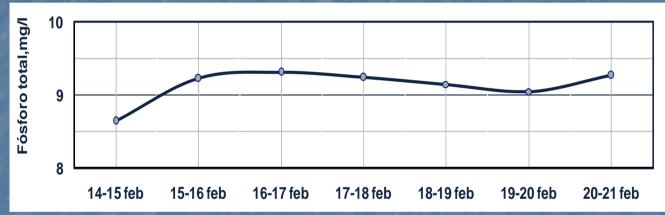
1ª etapa.- Elaboración de Documentos de Licitación de CPS

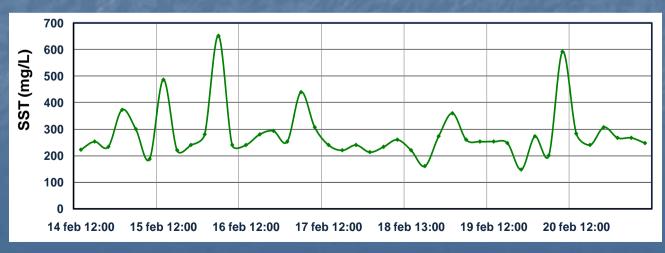
Conclusiones

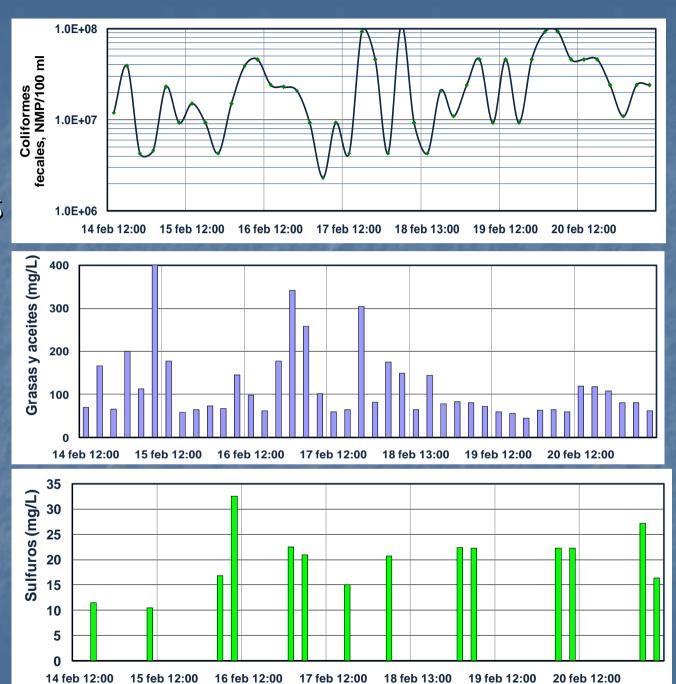

- ✓ La construcción de la PTAR Atotonilco permitirá cumplir con la normatividad establecida en lo que se refiere a las descargas que son vertidas a los cuerpos receptores de aguas nacionales, así como con las Condiciones Particulares de Descarga establecidas al Estado de México y al Distrito Federal.
- ✓ La capacidad de la PTAR Atotonilco representa más del 55% de las aguas residuales exportadas del Valle de México en época de secas.
- ✓ La construcción de la PTAR Atotonilco coadyuvará al logro de la meta fijada por el actual gobierno de tratar al 2012 el 60% de las aguas residuales.
- ✓ El saneamiento de las aguas residuales permitirá también el intercambio de agua de primer uso por agua residual tratada, así como recuperar la calidad de los ríos y lagos del territorio e incrementar la recarga de los acuíferos.

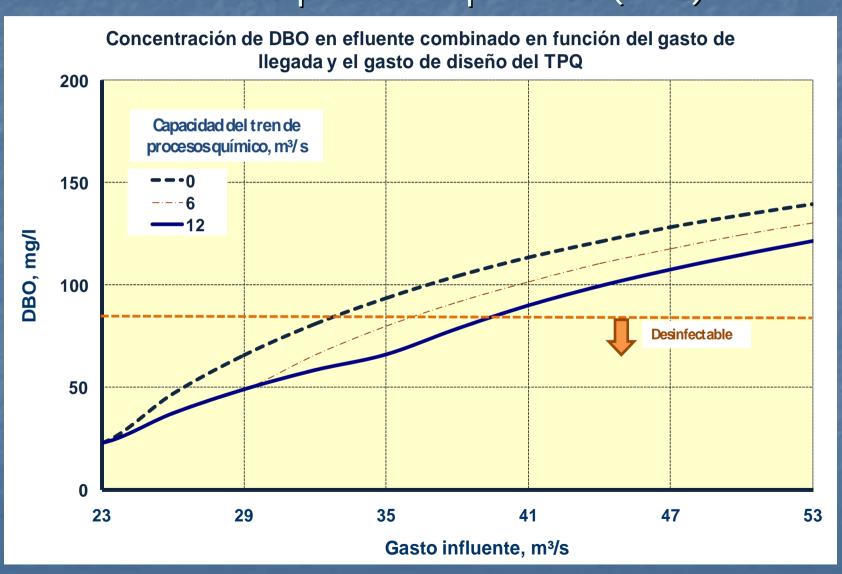
"EL SUMINISTRO ADECUADO DE LOS SERVICIOS DE AGUA
POTABLE Y ALCANTARILLADO A LA POBLACIÓN, ASÍ COMO EL
TRATAMIENTO DE LAS AGUAS RESIDUALES, BRINDA NO
SOLAMENTE BIENESTAR SOCIAL, Y CONTRIBUYE AL DESARROLLO
ECONÓMICO Y LA PRESERVACIÓN DE LA RIQUEZA ECOLÓGICA DE
NUESTRO PAÍS PARA GARANTIZAR UN DESARROLLO
SUSTENTABLE."


Riego agrícola

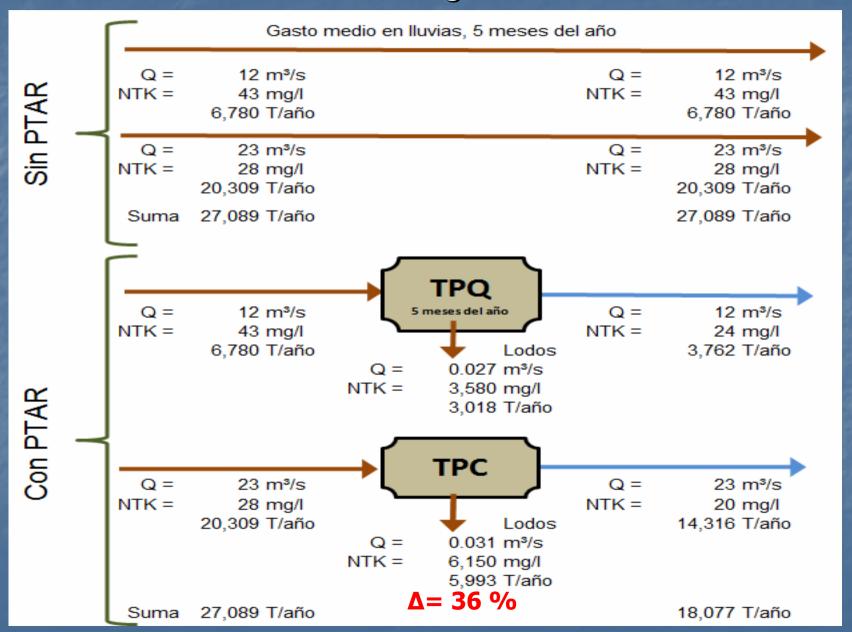

Distritos de riego	•	rficie a	de la	encia tierra a	Lámina anual	Volumen anual	Infraestructura km			
	Dominada	Sembrada	Ejidal	Pequeña propiedad	de riego cm	de riego Mm³	Canales revestidos	Canales sin revestir		
003 Tula	51,706	56,679	27,843	23,863	182	932	677	350		
100 Alfajayucan	35,216	21,475	15,466	19,750	183	394	673	0		
12 Ajacuba	3,972	3,529	3,379	592	101	34	41	0		
Sumas	90,894	81,683	46,688	44,205	178	1,360	1,391	350		


Características de descarga en estiaje año 2006

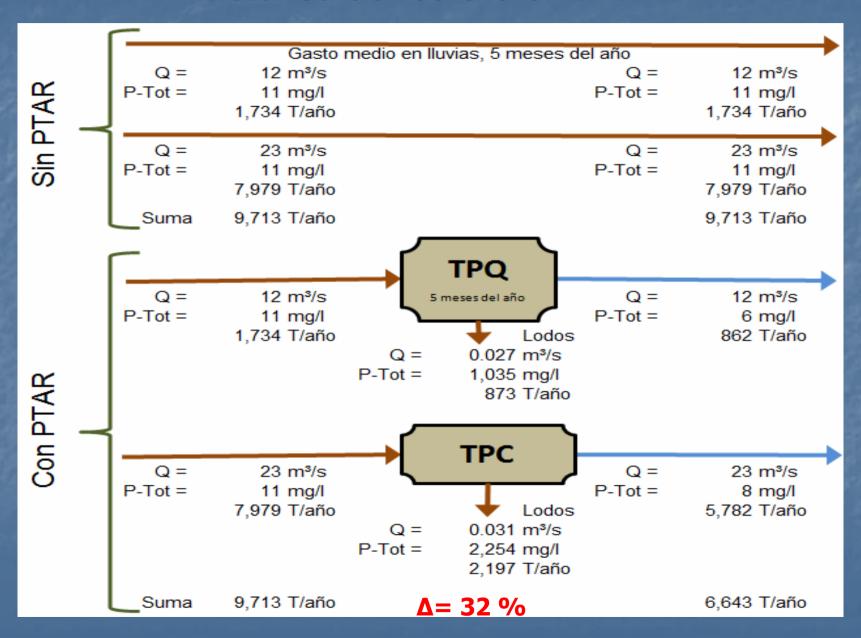

Características de descarga en estiaje año 2006



Características de descarga en estiaje año 2006



Criterios de selección de capacidad hidráulica del tren de procesos químicos (TPQ)



	Insur	nos					
	Energía e	eléctrica	Químicos				
Concepto	M kw-hr	Mari	Ca(OH) ₂	Cloro	Polímero		
	por año	Mw	t/año	t/año	t/año		
1 Planta de bombeo	21.6	2.5					
2 Tratamiento preliminar	0.4	0.0					
4 Sedimentación primaria	0.3	0.0					
5 Lodos activados	99.4	11.3					
6 Sedimentación secundaria	0.8	0.1					
7 Cloración	0.3	0.0		11,023			
8 Flotación de lodos	9.6	2.2			73		
9 Digestión anaeróbica (40°C)	6.9	0.8					
10 Filtro de banda	7.7	0.9			2,219		
11 Coagulación - floculación	2.3	0.3	56,575				
12 Filtro de banda, TPQ	6.7	0.8			1,920		
Sumas	166.0	18.9	56,575	11,023	4,212		
Costo unitario, \$/unidad	0.88		880	6,546	31,570		
Costo total, M\$/año	146		50	72	133		
Prod	ducción de ga	as en digesto	res				
Potencial calorífico		4	6Mw =	2 Mw	/(m³/s)		
Consumo de energía en el digestor		230,23	1 Mw-hr/año =	26 M w	/		
Energía excedente en el gas		168,608Mw-hr/año = 19 Mw					

Balance de nitrógeno en PTAR

Balance de fósforo en PTAR

A ~ -	In	versión al i	Inversión capitalizada al inicio del año 5						
Año	PT	ΓAR	Gaso	eléctrica	Total	Tasa de	interés		
	Inv. total	= 7,359 M\$	Inv. tota	aI = 452 M\$		6% anual	8% anual		
	%	M\$	%	M\$	M\$	M\$	M\$		
1	20	1,472			1,472	1,858	2,002		
2	35	2,576			2,897	3,068	3,244		
3	35	2,576	80 362		3,177	3,300	3,426		
4	10	736	20	90	826	876	892		
Suma	Suma 9,102								
Amortizació	ón de la inv	ersión a 20	años, M\$/	⁄año		794	974		
T1 para gas	to factural	ole, \$/m³				1.09	1.34		
Costo de oper	ración y man	tenimiento, M	\$/año				542		
Beneficio net	o de gasoelé	ctrica, M\$/año)				75		
Costo neto	de operaci	ón y manten	imiento, I	M\$/año			467		
T2 + T3 par	T2 + T3 para gasto facturable, \$/m³								
	6% anual 8% anual								
Costo total	por agua f	acturable, \$	/m³			1.73	1.98		

Ingresos por venta de "Bonos de carbono" del orden de 137 a 274 M\$/año