ANEAS WORKSHOP ON Industrial Wastewater Treatment: Technologies and Solutions Monday, 10 November 2014, Merida, Yucatan, Mexico

Challenges of Industrial Wastewater

Instructor: Prof. Avner Adin Adin Holdings, Israel

Outline

 Challenges of industrial wastewater
 Overview of pretreatment technologies and solutions
 Toluca industry - Rio Lerma case study

Combined treatment of domestic and industrial wastewater

Industrial wastewater characteristics

<u>Industry</u>	<u><i>pH</i></u>	<u>TSS</u>	BOD	COD	Miscellaneous	<u>Pollutional</u>
		<u>mg/l</u>	<u>mg/l</u>	<u>Mg/l</u>	<u>constituents</u>	<u>aspects</u>
Pulp and paper	6.9-	600-2300	150-420	700-100	Mercaplants,	Large volume, high pH, SS,
(Kraft process)	9.8				sulphides, lignin	colour and toxicity
Straw board	7.5- 12.9	3000	2000	5000	-	High pH ,SS and BOD
Tannery	9.5	3200	7000	-	Chromium 15-20 mg/l	High BOD, SS, Cr and colour
Cotton textiles	8.0- 11.0	30-50	200-600	-	Detergents, dyes, chromium 3mg/l	Alkali, BOD, dyes and varying chemical quality
Distillery	4.3	4000	20000	65000	Oil and grease	High BOD , SS ,grease and ready putrescibility and low pH
Steel mill		-	630	-	Grease, oil and tar NH,N	Highly toxic due to phenols cyanides and ammonia
Coke ovens	-				1000 mg/l, phenols 1300 mg/l ONS	
Steel(finished)	-	310	280	-	Phenol 97.5 mg/l NH,N 440mg/l	
Refinery	-	-	200		Sulfides, 180 mg/l- 30 mg/l	Mineral oil and phenols
Fertilizers Ammonia and urea	8.0	3700	30	330	NHON 510 mg/l arsenic	Toxic due to free ammonia and promotes eutrophication
Dairy	8.0	690	816	1340	Oil and grease ready putrescibility	High BOD, SS. grease And

PRINCIPLES OF INDUSTRIAL WASTEWATER TREATMENT

Classification of wastewater

- 1. Wastewater for process and wash
- 2. Wastewater for cooling
- 3. Sanitary wastewater

Waste minimization

Is achieved through good housekeeping (using water economically)

- Volume reduction
- Strength reduction

Volume reduction

Conservation and re-use of wastewater
Changing production to decrease waste
Elimination of batch discharge

1. To increase frequency of discharge to lessen the magnitude of batch discharge

2. To retain the batch discharge in basins and allowing it to flow uniformly and continuously

Strength reduction

Equipment modification
Process and raw materials change
Equalization of wastewater
Segregation of wastewater
Recovery of by-products

Physical & Chemical Treatment

Preliminary

- •Screening Rotary drums
- •Grinding, cutting, shredding
- •Grit chambers, grease traps
- •Pre Aeration
- •Plain / Primary sedimentation

Chemical

- Neutralization
- Chemical Coagulation
- Dissolved air floatation
- Chemical Precipitation
- •Oxidation and reduction of wastes

Biological treatment processes

Basic industrial wastewater treatment

Stream segregation

- Forbiden to dispose to municipal sewage system, e.g. blow-down from cooling systems
- Direct recycling of cooling water, e.g. bottles washing
- Process water after treatment, e.g. paper mill, readymix concrete, carwash
- Intended for by-products recovery, e.g. beer yeast, wool - lanolin, metals
- For separate treatments, e.g. detergents, metal finishing (Cr, CN)
- Specific materials for distruction and disposal

Equalization

<u>Definition</u>: Storage and mixing of wates for a predetermined time in order to enable emission of contaminants in constant discharge or constant mass.

Why:

1.Reduces pick flows

2.Enables more economic design of the treatment plant3.Minimizes concentrations of materials that harm thebiological treatment process or others4.Rapid mixing 0of "strong" wastes in a large volume ofvery weak wastes enables mass equalization without flowequalization

Neutralization

Purpose – Neutralize wastewater of too high or too low pH. The problem is harder in a sudden drop to a stream. Methods :

•Mixing streams of different pHs in the factory of two adjacent ones, e.g. of a factory for construction materials (lime and magnesium hydroxide) and of a chemical plant (acids). Sometimes equalization tanks are needed to enable residence timing and flows adjustments.

•To acid wastes – add limestone, lime slurry, soda caustic (NaOH)

•To alkali wastes - add CO₂, H₂SO₄, other acids

Process of industrial wastewater treatment analysis

Case study: Rio Lerma, Mexico

- Lerma River
- Origin lagoons near Almoloya del Río, Mexican Plateau
- Mouth Lake Chapala (→Río Grande de Santiago→Pacific Ocean)
- Basin countries Mexico
- Length 750 km (466 mi), without Río Grande de Santiago