ADIN HOLDINGS

Factory Survey and Data Collection

Instructor: Raanan Adin, CEO Adin Holdings

Industrial Wastewater Treatment: Technologies and Solutions

ANEAS Annual Convention 10 November 2014

Outline

- 1. Purpose
- 2. Survey Methodology
- 3. Examples
- 4. Summary

Purpose

A survey is intended to provide information needed for planning industrial wastewater solutions and solving industrial wastewater problems

Survey Methodology

PHASE 1: EVALUATION OF EXISTING DATA

PHASE 2: SITE SURVEY

PHASE 3 DATA COMPLETION

PHASE 4: EVALUATION OF DATA

PHASE 5: REPORT

BEFORE STARTING

- 1. Define the main challenges. Ex.:
 - a. Reduce operational cost
 - b. Compliance with standards
 - c. Failures of existing system
- 2. Clarify the methodology

- 3. Allocate internal and external resources/personnel needed for performing the survey
- 4. Define the responsibilities for sampling and analysis in external laboratories, if needed, and other external resources

PHASE 1:

EVALUATION OF EXISTING DATA

1. Site overview:

- a. Production site:
 - 1) Process flow sheet
 - Raw material usage: Composition and quantities of <u>all</u> materials used in the process; MSDS
 - 3) Production data: Present and future
 - 4) Production changes and fluctuations
- b. Non-production site (Ex.: resort, shopping complex, hospital):
 - 1) List of water consumers
 - 2) Characteristics of activity
 - 3) Seasonal and other changes in activity

PHASE 1:

EVALUATION OF EXISTING DATA

- 2. Water supply and drainage system
- 3. Water meter readings
 - When meters are not available: Timing of pumping cycles, etc.
- 4. Lab Analysis of water and wastewater
- 5. Cost data:
 - a. Water supply
 - b. Wastewater discharge
 - c. Existing treatment plant operation

PHASE 1:

EVALUATION OF EXISTING DATA

- 6. Land availability
- Location and characteristics of wastewater recipient
- 8. Standards and regulations: Current and expected
- Any additional data relevant to the specific issue

PHASE 2: SITE SURVEY

- 1. Prepare a questionnaire and detailed instructions many people in the factory could be involved
- 2. Site tour:
 - a. Visit all parts of the production area
 - b. Inspect water, sewerage and drainage systems
 - Open access doors and manholes view and smell; drop a stone to "sense" the scum
- 3. Visit the site at night, looking for small unnoticeable discharges that might be strong during the day. EVERY DISCHARGE SHOULD BE SURVEYED.

PHASE 3: DATA COMPLETION

- 1. Measure flows within the factory:
 - a. Use weirs if needed, or bucket and stop watch, or flux of salts etc.
 - b. Take frequent periodic samples to measure fluctuations
 - c. Instantaneous discharges: Sand filters backwash; Ion exchange regeneration; Production systems wash cycles

PHASE 3: DATA COMPLETION

- 2. Analysis of water and wastewater throughout the water system
 - a. Sampling times need to match production characteristics:
 - day and night
 - Weekday and weekend
 - Summer and winter
 - Dry day and rainy day
 - Batch vs. continuous flow

3. Simple treatability studies: settling, flocculation, pH, sludge, biological treatability, simple titration test

PHASE 4: EVALUATION OF DATA

34.10%

154.9

148.3

319.7

85.4

513.9

576.9

115.5

6.3

74.8

259.8

364.9

133.8

146.1

130.9

463.7

288 1

rrn

XXVIII Convención Anual y EXPO

ATAN 201

21.70%

22.70%

27.30%

23.90%

35.10%

74.50%

52.80%

33.10%

36.10%

27.40%

22.40%

36.60%

69.10%

20 200

- 1. Flow diagrams
- 2. Tables
- 3. Graphs
- 4. Statistical analysis:
 - a. Averages
 - b. Standard deviation
 - c. Peaks

PHASE 5: REPORT

- 1. Collected data and analysis
- 2. Violations of standards
- 3. Alternative solutions
- 4. Rough costs estimates
- 5. Potential sludge disposal sites
- 6. Effluent disposal charges

EXAMPLE: SHOPPING COMPLEX

- 1. Multifunction complex, including:
 - a. Shopping center
 - b. Residential building
 - c. Office building
 - d. Fitness center with pool
- 2. Goals:
 - a. Assure compliance with standards
 - b. Reduce water consumption

EXAMPLE: SHOPPING COMPLEX

- 1. Few violations of standards were found and reported
- 2. Chemical free water treatment for cooling towers was suggested
- **3.** Usage of wasted groundwater was identified:
 - a. Cooling towers
 - b. Toilet flushing
- 4. Future plans got expansion of the complex were discussed Consideration of an effective water cycle will be an integral part of the planning

Work continues . . .

SUMMARY

- Methodology of industrial wastewater survey has been presented
- A good survey requires careful planning of many details
- The result is useful information for planning solutions and problem solving

WATER IS LIFE

Raanan Adin, CEO, email: raanan.adin@adinholdings.com

